

Subscribe to DeepL Pro to translate larger documents. Visit www.DeepL.com/pro for more information.

Technical brochure LTG Air-Water Systems

LTGInduction

Induction unit type HFVsf System SmartFlow smart

Installation in parapets

LTG Raumlufttec	hnik
Luft-Wasser-Syste	me
Luftdurchlässe	
Luftverteilung	

Content	Page
Product overview, unit view, installation, Placement	5
Functionality, room flow	6
Type HFVsf-MQ//4, 4-wire system	7
Type HFVsf-MQQ//4, 4-wire system	8
Installation examples	9
Assembly	10
Operating states	11
Technical data	12
Power diagrams	13
Examples Rule Schemes	14
Nomenclature	17

Notes

The dimensions in this technical brochure are given in mm.

The general tolerances according to DIN ISO 2768-vL apply to the dimensions given in this brochure.

<u>The special tolerances</u> indicated on the drawing apply to the discharge grille.

<u>Straightness</u> and torsion tolerances for extruded aluminium profiles - according to DIN EN 12020-2.

The <u>surface</u> finish was designed for use in buildings indoor climate according to DIN 1946 Part 2. Other requirements on request

The current <u>tender texts are available</u> in Word format from your responsible branch office or at ww w.LTG.de.

LTGInduction

Induction devices

Induction technology - convenient and efficient

Since the first patent application for an induction unit in 1915 by the company founder Dr. Albert Klein, the induction units have been of the LTG is constantly evolving.

The induction principle

Air flowing through a nozzle forms a free jet. This entrains the surrounding air layer at its edges and thus increases the flowing air volume. In induction units, this so-called "induction" takes place inside the unit. Due to a special design, room air (secondary air) is entrained through a heat exchanger and thereby cooled or heated. Together with the fresh air (primary air), the supply air then flows back into the room and thus provides for Feel-good climate.

LTG induction units of the latest generation are energy-efficient and can be operated on demand thanks to LTG SmartFlow technology.

Advant

ages ■ Whisper quiet

No additional fan needed in the unit

- Sustainable: durable and low-maintenance
- Low energy costs / variable ventilation
- High cooling and heating capacities
- Cooling / heating and fresh air supply in one unit

The SmartFlow system

Induction technology redefined - air conditioning on demand

The LTG SmartFlow system offers optimum comfort and energy consumption even in changing load situations. The ideal flow pattern is selected depending on the required cooling capacity and fresh air volume by opening air nozzles and controlling chilled water valves. This means that the best possible comfort, acoustics and energy efficiency can be achieved with one unit for each load situation. The control can be manual (room utilisation) or automatic (presence- or co2-guided). In contrast to conventional induction technology, cooling capacity and fresh air supply can be adapted to the specific requirements.

With SmartFlow technology, unnecessary ventilation is a thing of the past! The HFVsf adjusts the amount of fresh air and the cooling capacity to the current requirements. This means minimum energy costs with maximum comfort. An investment that pays off!

Advantages

- Highest possible energy efficiency through low primary pressures
- Demand-controlled ventilation for all uses; simple change of use possible
- Good acceptance through individual user influence
- · Economical even with a refurbishment
- High user comfort: fresh air and cooling capacity adjustable, extremely quiet operation
- Variable installation in existing or new parapet possible

Comparison of conventional induction technology and SmartFlow technology

Device view

Insert

Comfortable ventilation and temperature control of small, large or meeting rooms as required,

Installation, placement

Installation in parapets. Installation example with perforated sheet panelling, intake from below, discharge as mixed displacement flow to the top plus displacement flow to the front.

Product overview

	Cooling, heating						
Functions	Fresh air supply						
	• Demand ventilation (e.g. CO2, presence, switch)						
	 Manual over 	ride (type HFV/H)					
Variable volume flow	 Motorised ad 	djustment 2-stage (type HFV/M2)					
	 Motorised adjustment stepless (type HFV/MS) 						
	• Discharge upwards, mixed source flow, intake on façade side						
Installation designs, flow patterns	Discharge upwards, mixed source flow, intake from room side						
	 Discharge upwards, mixed displacement flow + additional displacement flow, intake on façade side 						
	• BG 630	(volume flows up to 70 m ³ /h at 120 Pa)					
Sizes	• BG 800	(volume flows up to 115 m ³ /h at 120 Pa)					
	• BG 1000	(volume flows up to 143 m ³ /h at 120 Pa)					

Functionality HFVsf-MQQ

For energy-saving use, LTG Aktienge sellschaft has developed the HFVsf-MQQ system with complete control.

Through a combination of induction unit and displacement air diffuser, the ventilation is largely decoupled from the room temperature control and the flow field is adapted to the load in the room. The control system detects the co2 content and room temperature, selects the ideal flow pattern, continuously opens the appropriate air nozzles and controls hot/cold water valves.

With a low material load, the room is heated or cooled with a small primary air flow solely by the induction principle. Low-pulse supply air jets on the façade create a mixed/source flow characterised by low air velocities and good ventilation effectiveness.

If the primary air demand increases, a displacement flow diffuser is switched on continuously. The associated additional cooling capacity is sufficient to adequately ventilate and cool a densely occupied office room. Acoustic and thermal comfort are maintained.

Without occupancy, the primary air can be switched off or regulated back to an air exchange rate adapted to the building emissions. If necessary, an excessive primary air volume flow can be activated with a rapid cooling function.

In order to enable a demand-oriented adjustment of the volume flows in a utilisation zone, a pressure control in the system is required.

Room flow

The guide grille in the discharge throat generates lowpulse supply air jets whose velocities and temperature differences are reduced in a limited mixing zone. The subsequent displacement flow is characterised by low room air velocities and low vertical temperature stratification.

HFVsf-MQQ in cooling mode: Comfortable room flow even at 100 m³/h primary air volume flow. Mixed/source flow Source flow

Heating case: screening of the cold façade (mixed/source flow) Fresh air distribution in large room depths (displacement flow)

Technical leaflet - Induction units HFVsf System SmartFlow Type HFVsf-MQ/../4, 4-wire system

Specification

One heat exchanger and two separate water circuits for cooling and heating the secondary air.

Water-side flow control by two valves. Primary air connections with DN 125 mm laterally on the left and/or right, optionally from below.

Loop-through of a second induction unit possible. Vertical installation. Water connections on the right or left. Air control elements create a mixed/source flow with low room air velocities for high comfort. Metal nozzles. Intake from the rear or front, discharge upwards. Primary air adjustment manual or motorised. Engine on the right (looking at the heat exchanger). Without filter.

Dimensions, weight

BG	А	В	D	E	Weight
		[m	m]		[kg]
630	627	597	900	830	18
800	857	827	1130	1060	22
1000	1057	1027	1330	1260	28

All dimensions ± 2 mm

Illustration: Discharge upwards, motor right, air connection left/right, without suspension, without CO2 sensor

E LTG Aktiengesellschaft Grenzstraße 7 70435 Stuttgart Germany Phone +49 711 8201-0 Fax +49 711 8201-720 info@LTG.de www.LTG.de Issues with an earlier date are hereby invalidated Technical changes reserved

Technical leaflet - Induction units HFVsf System SmartFlow Type HFVsf-MQQ/../4, 4-wire system

Specification

One heat exchanger and two separate water circuits for cooling and heating the secondary air.

Water-side flow control by two valves. Primary air connections with DN 125 mm laterally on the left and/or right, optionally from below.

Loop-through of a second induction unit possible. vertical installation. Water connections on the right or left. Mixed/source flow and additional source flow. Intake from below and front, discharge to the front via the sill (displacement flow) and to the top via a discharge grille (mixed displacement flow).

Primary air adjustment manual or motorised.

Engine on the right (looking at the heat exchanger). Without filter.

Dimensions, weight

BG	Α	В	D	E	Weight
		[m	m]		[kg]
630	627	597	900	830	18
800	857	827	1130	1060	22
1000	1057	1027	1330	1260	28

All dimensions ± 2 mm.

Illustration: Discharge to the front and top, motor on the right, air connection left/right, without suspension, without CO2 sensor

E LTG Aktiengesellschaft Grenzstraße 7 70435 Stuttgart Germany Phone +49 711 8201-0 Fax +49 711 8201-720 info@LTG.de www.LTG.de Issues with an earlier date are hereby invalidated Technical changes reserved

Intake at the rear of the façade, mixing/source flow to the top, source flow to the front.

The displacement flow diffuser must be sealed to the cladding to prevent short circuits.

Type HFVsf-MQQ/./F

Intake at the rear of the façade, mixing/source flow upwards, source flow upwards.

* With a grille width of 126 mm, the air control blades can be adjusted through the grille opening (see Technical leaflet Accessories for LTG air-water systems, LDC discharge grille, installation example).

With a grille width of 112 mm (minimum width), the sill cladding must be removed in order to adjust the air guide elements.

Type HFVsf-MQ/./F

Intake at the front from the room, mixing/source flow upwards.

* With a grille width of 126 mm, the air control blades can be adjusted through the grille opening (see Technical leaflet Accessories for LTG air-water systems, LDC discharge grille, installation example).

With a grille width of 112 mm (minimum width), the sill cladding must be removed in order to adjust the air guide elements.

Type HFVsf-MQ/./R

Mounting with lateral wall bracket, for intake from the front

Technical leaflet - Induction units HFVsf System SmartFlow 4-pipe system - cooling and heating

Operating states (setting nozzle flap)

Cooling capacity with different amounts of water

E LTG Aktiengesellschaft Grenzstraße 7 70435 Stuttgart Germany Phone +49 711 8201-0 Fax +49 711 8201-720 info@LTG.de www.LTG.de Issues with an earlier date are hereby invalidated Technical changes reserved

Volume flow control manual or motorised, in 7 operating levels.

V0 - closed Secondary power 0 Primary air volume = 5

V1 - low primary air volume 1, low induction V2 - low primary air volume 2, medium induction V3 medium primary air volume 1, medium induction
V4 - medium primary air volume 2, medium induction V5 - boost level 1, high induction
V6 - Boost level 2, high induction

HFVsf-deu-TP (01/15)

Technical leaflet - Induction units HFVsf System SmartFlow 4-pipe system - cooling and heating

Technical data cooling Size 630

Adjusting nozzle fla	the p	V0 V1 V2			V3	V4	V5	V6
Vp	[m³/h]	5	14	22	40	58	64	70
QP	[W]	14	36	59	106	155	171	187
Qk	[W]		146	218	218	218	254	274
tKWR	[°C]	16	17	17,6	17,6	17,6	17,8	18
ΔpW	[kPa]				6			
Qk _{ges}	[W]	14	183	277	324	372	425	461
LWA _{MQ}	[dB(A)	<28	<28	<28	30	33	33	33
LWA _{MQQ}	[dB(A)	<28	<28	<28	31	36	35	35

Technical data cooling Size 800

Adjusting the nozzle flap		V0	V1	V2	V3	V4	V5	V6
Vp	[m³/h]	8	22	36	64	93	105	115
QP	[W]	22	60	95	170	247	280	307
Qk	[W]		222	331	331	331	386	416
tKWR	[°C]	16	17,6	18,4	18,4	18,4	18,8	19,0
ΔpW	[kPa]				7,6			
Qk ges	[W]	22	282	426	501	578	666	724
LWA _{MQ}	[dB(A)	30	29	29	32	35	35	35
LWA _{MQQ}	[dB(A)	30	29	29	33	38	37	37

Technical data cooling Size 1000

Adjusting nozzle fla	the p	V0 V1 V2		V2	V3	V4	V5	V6
Vp	[m³/h]	10	28	44	79	115	131	143
QP	[W]	28	74	118	210	305	348	382
Qk	[W]		274	408	408	408	476	514
tKWR	[°C]	16	18,0	18,9	18,9	18,9	19,4	19,7
ΔpW	[kPa]				8,9			
Qk ges	[W]	28	348	525	618	713	824	896
LWA _{MQ}	[dB(A)	31	30	30	33	36	36	36
LWA _{MQQ}	[dB(A)	31	30	30	34	39	38	38

Legend

VP	- Primary air flow rate (± 10 %)
QP	 Primary cooling capacity (fresh air component) (± 5 %)
Qk	- Secondary cooling capacity (via heat) (± 5 %)
Qh	- Heating power secondary (± 5 %)
tKWR KKWR	- Fennerature cold water, return
EXX WR ges	= Hotwaterafeling temperature
Ann Ma Ma	= Water-side pressure/ft/20/hit (± 3 dB)
lwa _{mqq}	- Sound power level MQQ unit (± 3 dB)

Technical data heating Size 630

Adjusting nozzle fla	the p	V0 V1 V2			V3	V4	V5	V6
Vp	[m³/h]	5	14	22	40	58	64	70
QP	[W]	8	23	37	66	97	107	117
Qh	[W]	144	427	561	561	561	628	665
tKWR	[°C]	53 <i>,</i> 8	51,3	50,2	50,2	50,2	49 <i>,</i> 6	49,3
ΔpW	[kPa]				1,6			
Qh _{ges}	[W]	136	405	525	495	465	521	548
lwa _{MQ}	[dB(A)	<28	<28	<28	30	33	33	33
LWA _{MQQ}	[dB(A)	<28	<28	<28	31	36	35	35

Technical data heating Size 800

Adjusting nozzle fla	the p	V0 V1 V2			V3	V4	V5	V6
Vp	[m³/h]	8	22	36	64	93	105	115
QP	[W]	-14	-37	-59	-106	-155	-175	-192
Qh	[W]	219	649	853	853	853	954	1010
tKWR	[°C]	53,1	49,4	47,4	47,4	47,4	46,8	46,3
ΔpW	[kPa]				2,2			
Qh _{ges}	[W]	205	612	793	746	698	779	818
lwa _{MQ}	[dB(A)	30	29	29	32	35	35	35
LWA _{MQQ}	[dB(A)	30	29	29	33	38	37	37

Technical data heating size 1000

Adjusting nozzle fla	g the ap	V0	V1	V2	V3	V4	V5	V6
Vp	[m³/h]	10	28	44	79	115	131	143
QP	[W]	-17	-46	-74	-131	-191	-218	-239
Qh	[W]	271	800	1052	1052	1052	1177	1246
tKWR	[°C]	52,7	48,1	46	46	46	44,9	44,3
ΔpW	[kPa]				2,6			
Qhges	[W]	253	754	978	920	861	959	1007
LWA _{MQ}	[dB(A)	31	30	30	33	36	36	36
LWA	[dB(A)	31	30	30	34	39	38	38
MQQ								

Design conditions

		Cooling	Heatin
Room air temperature	[°C]	26	g 23
relative humidity	[%]	50	-
Primary pressure	[Pa]	120	120
Primary air temperature	[°C]	18	18
Water flow temperature	[°C]	16	55
The feloric values apply to u - with fan insert standard (m	120 ce air grille)	100	

- with an LTG air outlet grille LDC

- with 50 mm distance (suction area) to facade/wall

- Without filter

HFVsf-deu-TP (01/15)

E LTG Aktiengesellschaft Grenzstraße 7 70435 Stuttgart Germany Phone +49 711 8201-0 Fax +49 711 8201-720 info@LTG.de www.LTG.de Issues with an earlier date are hereby invalidated Technical changes reserved

Technical leaflet - Induction units HFVsf System SmartFlow 4-pipe system - cooling and heating

Cooling capacity and acoustics Size 800

Cooling capacity and acoustics Size 1000

Heating capacity and acoustics Size 630

Heating capacity and acoustics Size 800

Heating capacity and acoustics Size 1000

Example of a control scheme for supply and exhaust air

Balanced supply and extract air of a utilisation zone by pressure control in the supply air and tracking extract air volume flow control via setpoint of the supply air

The DRF pressure regulator keeps the pressure within a line constant at the design point.

Due to the variable control option of the supply air volume flow, the extract air volume flow should follow the supply air volume flow. The supply air volume flow is passed on by the measuring unit (MSE) and in the form of a 0...10 V signal to the variable volume flow controller (e.g. VRFactive).

In this way, the exhaust air volume flow follows the supply air volume flow. The required components can be obtained from LTG.

Example of a control scheme with RDG 100, with presence or CO₂ sensor

Individual room control with $^{\rm "CO_2}$ -dependent" airside 2-point control

Air-side regulation:

If, for example, the CO2 concentration rises above 1000 ppm,

Vmax is activated.

If the $_{\rm CO2\ concentration}$ falls below 800 ppm, Vmin is activated again.

The control of the water-side through valves is carried out by a room temperature controller.

Example of a 2-point control scheme with RDG 100

The air-side volume flow and the water-side flow rate are controlled directly by the RDG 100 room temperature controller.

In automatic mode, the volume flow is controlled depending on the "cooling" or "heating" demand.

In the event of an increased power requirement, for example, "Vmax" is activated. In addition, the user has the option of manually controlling the high air volume in the "manual" operating mode.

A presence sensor is also optionally available here, with which the room thermostat can be switched to an "economy mode", for example.

For further information on control, see the technical brochure "Control for induction units and fan coil units".

Nomenclature, ordering code

HF\	HFVsf MQ / M2 / 4 / F / 630 / WR / 125xR / G / S / OW										
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
(1)	Serie	es				HFVsf	=	HFVsf			
(2)	Туре	!				MQ MQQ	= =	Mixed sour MixedSour	ce flow ceFlow	+ Source	eFlow
(3)	Drive	2				H M2 MS	= = =	manual motor 2po motor/elec	int tric cont	inuous	
(4)	Heat	exchar	nger			2 4	= =	2leaders 4Ladder			
(5)	Heat	excha	nger a	rrange	ement	F R	= =	Facade sid Room side	е		
(7)	Size					630 800 1000	= = =	630 800 1000			
(6)	Wate	er conn	ection			WR WL	= =	right left			
(8)	Prima	ary air :	spigot			125xR	=	DN x side (R, L, U)		
(9)	Outle	et nozzl	e			OA G S1570	= = =	Without spi With spigot With nozzle	got t, straight e, inclined	t, specify	[,] height
(10) \$	Suspe	nsion				ОН S0-50 S-50 FK BK-K BK-H	= = = =	without hol Lateral for Distance for Lateral - dis Foot brack Floor conso	der foot brack oot brack tance wa et 800 m ble with f ble with f	cket or v et or wa II m tilting ma neight ad	vall - ll echanism djustment
(11) (Conde	nsate t	ray			OW MW	=	Without dra With drain	ain		

Product overview LTG Air-Water Systems

LTG Induction -- Induction devices

Ceilin	Parapet	Floor
g		
HFFsuite SilentSuite	HFV / HFVsf SmartFlow system	HFB / HFBsf SmartFlow system
LHG System Indivent	HFG	
HDF/HDFsf SmartFlow system	QHG	
нос		

LTGFanPower fan coil units

Ceilin	Parapet	Floor		
g				
LVC System Indivent	VFC	VKB		
VKH	QVC	SKB		
VKE				

Decentral - Decentralised ventilation units

Ceilin	Parapet	Floor
FVS Univent	FVM	FVD
		FVPpulse PulseVentilation system

Engineering services

Room air technology Air-water systems Air diffusers Air distribution

Process air technology Fans Filter technology Humidification technology

Engineering services

Fluid mechanics Thermodynamics Acoustics/Comfort Customised solutions

LTG public limited company Grenzstraße 7 70435 Stuttgart Germany Tel.: +49 (711) 8201-0 Fax: +49 (711) 8201-720 E-mail: info@LTG.de www.LTG.de LTG Incorporated 105 Corporate Drive, Suite E Spartanburg, SC 29303 USA Tel.: +1 (864) 599-6340 Fax: +1 (864) 599-6344 E-mail: info@LTG-INC.net www.LTG-INC.net

HFVsf-deu-TP (01/15) 416-124 E LTG Aktiengesellschaft Editions with earlier date are invalid Subject to technical modifications